- ❖ Describe when the dome/interior light of the car should be on.
 - DriverDoorOpen = true if lefthand door open
 - PassDoorOpen = true if righthand door open
 - LightSwitch = true if light should be on regardless of door state, false if light should be on when a door is open

* What does the following circuit do?

- * To buy beer, someone must be of age. Which of these sentences tells us exactly when Ann and Bob can get beer?
 - 1. It is not true that both Ann and Bob don't have ID.
 - 2. Ann has ID or Bob has ID or Both have ID.
 - 3. Ann has ID or Bob has ID
 - 4. Ann has ID and Bob does not, or Bob has ID and Ann does not.
 - 5. Ann has ID, or Bob has ID and Ann does not.

* Create the truth table for an equality circuit, which is true whenever the two inputs are the same.

- ❖ Write the Boolean equation for the 2nd seat belt light circuit on slide 7
 - Seat Belt Light (driver belt in, passenger belt in, passenger present):

* Does the following Boolean equation implement the function given in the truth table?

$$MyCout' = (A*B) + (A*Cin) + (A*Cin)$$

Α	В	Cin	Cout	MyCaw
0	0	0	0	0
0	0	1	0	0
0	1	0	0	0
0	1	1	1	0
1	0	1	1	1
1	1	0	1	t
1	1	1	1	110

Simplify the following Boolean Equation

$$AB + AC + AB$$

$$= AR + \overline{AR} + \overline{AC}$$

$$= \frac{A(R+q)}{A+\overline{A}}$$

$$= (A+\overline{A})R + AC$$

$$= R + AC$$
UNITY

Simplify the following Boolean Equation, starting with DeMorgan's Law

$$\overline{F} = A\overline{B} + AC$$

$$F = (A\overline{B}) + (AC) = (A\overline{B})(AC)$$

$$= (\overline{A} + B)(\overline{A} + \overline{C})$$

$$= \overline{A} + \overline{A}B + \overline{A}C + BC$$

$$= \overline{A} + BC$$

$$= \overline{A} + BC$$

$$ABS OZPTION$$

* Assuming all gates have the same delay (including inverters), complete the following timing diagram.

* Write the Verilog for a 2-input gate that is TRUE when an odd number of inputs are true.

* What does this circuit do?

Convert the following circuit to NAND/NOR form

* What does this circuit do?

- ❖ Convert the Truth Table to a K-Map.
 - * Letters are used as variables to hold the function value
 - First value already filled in.

<u>A</u>	В	C	D	F
0	0	0	0	g
0	0	0	1	h
0	0	1	0	i
0	0	1	1	j
0	1	0	0	k
0	1	0	1	1
0	1	1	0	m
0	1	1	1	n
1	0	0	0	0
1	0	0	1	p
1	0	1	0	q
1	0	1	1	r
1	1	0	0	S
1	1	0	1	t
1	1	1	0	u
1	1	1	1	v

* Convert the Truth Table to a K-Map, then solve.

A	В	C	F	_
0	0	0	1	
0	0	1	1	
0	1	0	0	
0	1	1	0	
1	0	0	1	
1	0	1	1	1
1	1	0	1	
1	1	1	0	

* Solve this K-Map.

* Solve the following K-Map.

* Solve the following K-Map.

* Extend this Verilog code to also show the letter "A" on input pattern 1010 (ten) and "F" on pattern 1111 (fifteen).

```
[3:0] bcd;
                                         input
                                         output reg [6:0] leds;
L0
             4'61010: (els=761110111 always @ (*)
                                           case (bcd)
             4 / 1111: leds = 7 / 5 1110001
                                              // BCD[]
                                                                LEDS[]
                                              // 3210
                                                                6543210
                                              4'b0000: leds = 7'b0111111;
                                              4'b0001: leds = 7'b0000110;
L6
                                              4'b0010: leds = 7'b1011011;
                                              4'b0011: leds = 7'b1001111;
                                              4'b0100: leds = 7'b1100110;
                                              4'b0101: leds = 7'b1101101;
                                              4'b0110: leds = 7'b1111101;
                                              4'b0111: leds = 7'b0000111;
L3
                                              4'b1000: leds = 7'b11111111;
                                              4'b1001: leds = 7'b1101111;
                                              default: leds = 7'bX;
                                           endcase
```

endmodule

* Amy, Bill, Carol, and Dennis each decide independently whether they want to play Chess or Checkers, each a 2-player game. Develop a circuit that can tell if the 4 people can be organized into two simultaneous games, respecting each person's choice.

	r r r r		
ABOO	O 0 - 0 - 1	GENEON, O O I	
01	06	0	
(0)	00101	00	
ll .	00000	0	

* For the buggy majority circuit below, the expected and the measured results are shown in the table. What gate is broken in this circuit?

Signal	Expected	Measured
A	0	0
В	1	1
С	1	1
D	0	0
Е	0	1
F	1	1
G	1	0
M	1	0

Can this circuit ever output a FALSE?

* The following two flip-flops are subtly different, but both useful. The difference in code is shown in bold. What is the difference in their behavior?

```
module D_FF1 (q, d, reset, clk);
  output q;
  input d, reset, clk;
  reg q;

always @(posedge clk)
  if (reset)
    q <= 0;
  else
    q <= d;

endmodule</pre>
```

```
module D_FF2 (q, d, reset, clk);
  output q;
  input d, reset, clk;
  reg q;

always @(posedge clk or posedge reset)
  if (reset)
    q <= 0;
  else
    q <= d;

endmodule</pre>
```

REVIEW PROBLEM 23R

FIGURE OUT WHAT THE FOLLOWING CIRCUIT DOES.

ARE A AND B SET OR RESET SIGNALS? ACTIVE LOW OR KIGH?

A IS AN ACTIVE LOW RESET

B IS AN ACTIVE HIGH RESET

X -y	MAND	MGR
06	1	(
01	١	G
lG	1	6
1.1	ð	6
		1

❖ In class we said we shouldn't put a logic gate on the clock input of a flipflop because of glitches. Does this fix the problem?

* If gate delays are 1.0ns each, T_{setup} is 0.5, and T_{hold} is 1.5, what is the best clock period for this computation?

- ❖ Given the light display shown, build the FSM for a "move left" arrow traffic sign. It should animate an arrow moving left
 - Hint: Can any of the bulbs be connected to the same signal?

What is the series of inputs that will produce the most TRUEs on the output

An ambulance company wants a flashing yellow light that, when a button is held, will instead hold a solid red. Design this machine.

Draw the circuit diagram for this code

```
module foo (clk, reset, in, out);
   input clk, reset, in;
   output reg out;
   parameter A = 1'b0, B = 1'b1;
   reg ps, ns;
   always @(*) begin
        case (ps)
        A: ns = B;
        B: if (in) ns = B;
        default: ns = 1'bX;
        endcase
        out = ps;
   end
   always @(posedge clk)
        if (reset) ps <= 1'b0;
        else ps <= ns;
endmodule
```


* What does this FSM do?

* Draw the state diagram of a machine that continuously outputs a true once at least two 0's and at least two 1's (in any order, not necessarily consecutively) have been seen, not including current input.

* Highway onramps have lights to meter cars entering the highway. Design the FSM for this, assuming we have a separate timer.

❖ Design a circuit to control the 7-segment display as an elevator floor indicator for a 4-story building.

Which of the following numbers represents the largest value?

*
$$(10011)_2$$
 = 1 + 2 + 16 = (\int_{16} (octal)
* $(23)_8$ = 2×8+3=15...
* $(13)_{16}$ = 1 × 16 + 3 = (\int_{16}

- Convert the following value to binary
 - ***** (1000)₁₀

- Perform the following conversions
- $(110101001011101010)_2$ to hexadecimal

 $4(4AF3)_{16}$ to binary

Perform the following binary computations.

❖ If all gates have a delay of 1ns, how long does a 4bit adder take to compute?

* Create a **truth table** for a circuit which tells if a 3-bit number is evenly divisible by 3 (num/3 leaves no remainder). Have a separate output for the unsigned, 2's comp, and sign-magnitude versions.

B2 B1 B0	Uns	S-M	2's

- Perform the following computation in 2's Complement & Sign/Magnitude
 - * Hint: convert subtraction to addition of the negation

2's Complement:

Sign/Magnitude:

- Convert the following numbers to decimal
- ❖ (1001) in 2's Complement:
- * (1001) in Sign/Magnitude:

- ❖ (0101) in 2's Complement:
- * (0101) in Sign/Magnitude:

- ❖ For the 6-bit 2's Complement number (111010)
 - * How would it be represented in 10-bit 2's Complement?

* What's the smallest number of bits required to represent that number in 2's Complement?

* An office building has an automatic lighting system based on motion sensors. An individual office light should be on if motion has been detected in the office within the last 5 minutes. Hallway lights should be on if any office lights on that hallway have been on, or any motion in the hallway detected, during the last 10 minutes. Design the system.

Office	Office	Office	Office	Office		
A	В	C	D	E		
Hallway H						

* If we only have inverters and standard 2-input gates, how many gates are needed to build a 3:8 decoder?

❖ Build a full adder using 3:8 Decoders and as few other gates as possible.

* Instead of a priority encoder, we plan to use the basic 4:2 encoder. However, we want an output "invalid" which is true when the encoder's assumption that only one input is true is not met. Design the circuit for this output.

* For a stereo, design a crossover box to deal with swapped speaker cables using **only muxes**.

❖ Implement a 4:2 priority encoder using only 8:1 muxes and inverters

* Implement the controlled register from lecture in Verilog.

**Module reg4 (outs reset aloads de clk):

```
module reg4(out, reset, load, d, clk);
output reg [3:0] out;
                  elseil (load)
                 1 out tout; I BELAUSE

end

Permes FF
               endmodule
```

PROBLEM 4JL: INFERRED LATCHES

❖ Given what we know about about shift registers, what are the options for sending 32-bit values?

Wires Cycles Method

❖ I have already built an FSM to run at 5MHz, but I now need to use a 50MHz clock. How can I get it to still only change states 5M times a second?

❖ Design a down counter that goes from 3 to 1 (then back to 3), with a parallel load.

❖ Build a 4x1 RAM. Use premade RAM cells, along with any standard components you need.

❖ If we only had 8x2 memories available, how could we make an 8x6 RAM?

* Implement this circuit with 4-LUTs

* What components are on your DE1-SoC board, and how are they connected?

* Is the following good Verilog? If not, fix it. If so, draw the circuit it represents.

```
reg a, b, c;

always @(*) begin
  b = 0;
  c = 0;
  if (a)
      b = c;
  else
      c = b | d;
end
```

* Write Verilog that would create this circuit.

* When will current flow from the input to the output for each of these?

* What do these circuits do?

❖ Build an XOR gate from transistors. Assume you have two inputs, A and B, as well as their inverses (Ā and B).